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We p resen t  the r e su l t s  f rom an exper imenta l  study of the permi t t iv i ty  and the loss  tangent of 
C h a s o v - Y a r s k  clay as functions of the mois ture  content and wavelengths.  We desc r ibe  the 
instal la t ion used to study the changes in capaci tance during the course  of drying the mate r ia l .  

T h e r e  is cons iderable  in te res t  in inves t iga t ing  the e l ec t rophys ica l  p r o p e r t i e s  of m o i s t e n e d C h a s o v - Y a r s k  
clay as a typical  co l lo ida l  cap i l l a ry -p0 rous  ma te r i a l  in connection with a study of the mechan i sms  of dehy-  
dra t ion  and drying,  as well  as  for the development  of e l ec t r i ca l  methods of de te rmin ing  the mois tu re  con-  
tent  of d i s p e r s e  s y s t em s .  

To calcula te  the power P of the energy sca t t e r ed  in the ma te r i a l  as it is heated in a h igh-f requency 
e lec t r i c  field E 

P = 5.55E~fe ' tg~. 10 ~7 w, 

we mus t  know the magnitude of the pe rmi t t iv i ty  e '  and the loss  tangent tan~3 of the ma te r i a l  with a specif ic  
mois tu re  content w at va r ious  f requencies  f.  

This  clay was c leansed  of mechanical  impur i t ies  by sed imenta t ion  iil dist i l led v~ater; it was dried,  
ground in a porce la in  m o r t a r ,  and pas sed  through a s ieve with a mesh of d = 0.25 ram. The p r e p a r e d  
spec imens  were  dr ied for  12 h 120~ The moisu re  content of the dr ied spec imen  was assUmed to be z e r o .  

The w a t e r - r e t e n t i o n  p r o p e r t i e s  of the Chasov -Yar sk  clay have been studied r a the r  well  by var ious  
mutually independent methods [1]. We p e r f o r m e d  a control  check on the wa t e r - r e t en t i on  p rope r t i e s  of this 
c lay,  using such methods as the heats  of wetting [2], the Dumanskii  indicator  [3] involving the use of an 
ITR-1  i n t e r f e r o m e t e r ,  sorpt ion and desorp t ion  i so the rms ,  and t h e r m o g r a m s  of i so the rmal  drying [4, 5]. 
All of the tes t s  we re  c a r r i e d  out at 25~ The exper imenta l  data a r e  given in the table and agree  with the 
l i t e r a t u r e  data of [1, 3]. 

The e lec t rophys ica l  p rope r t i e s  C h a s o v - Y a r s k  clay,  in connection with the moi s tu re  content,  were  
studied in a wavelength range  f rom 6000 to 3 m with Q - m e t e r s ,  in accordance  with an ea r l i e r  developed 
method [6]. 

F igure  l a  shows the exper imen ta l  data in the fo rm of curves  for  the functlonseT(w) and tan~(w) for 
wavelengths  of 6000, 400, 40, and 20 m. 

In the reg ion  of moi s tu re  contents cor responding  to monomoleeular  adsorpt ion,  we find an approx i -  
mate ly  l inear  re la t ionship  between the permi t t iv i ty  and the mois tu re  content. For la rge  mois tu re  con-  
tents  we subsequent ly  note a substant ial  inc rease  in the permi t t iv i ty ,  which is all the more  pronounced for 
the longer  waves .  The la t t e r  c i r cums tance  indicates the d i spe r s ion  of the s y s t e m ' s  permi t t iv i ty .  

With low wa te r  contents the magnitude of tan 5 for all  wavelengths inc reases  markedly;  we then note a 
l inea r  re la t ionship  between tan ~ and w. For  h = 6000 m when w ~ 3.5% we find a t rans i t ion  f rom the l inear  
segment  to a s t eepe r  slope for  the function tan 5(w). This  is apparent ly  assoc ia ted  with the fact  that for 
smal l  wavelengths  re laxa t ion  po la r iza t ion  is c h a r a c t e r i s t i c  for  the molecules  of the subsequent  adsorpt ion 
l a y e r s  of wa t e r  which a re  not as s t rongly bound as the monomolecu la r  l ayer .  
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TABLE 1. Different ia l  Water -Reten t ion  P r o p e r t i e s  of C h a s o v - Y a r s k  
Clay 

Moisture of mono- i 
:2o ecul   age , .[ 

fr~ Ir~ fr~ 
equation hermogram method 

2 , 6  ! 3 , 5  6 , 6  

Bound moisture, % t Maximum hygro- 
scopic moisture, o/o 
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Fig. 1. E lec t rophys ica l  p r o p e r t i e s  of C h a s o v - Y a r s k  clay 
as a function of mois tu re  content, % for var ious  wave-  
lengths (a) and as a function of the wavelength for var ious  
mois tu re  contents (b); a: 1) 7t = 6000 m; 2) 400; 3) 40; 4) 
20; b: 1) w = 5.2~ 2) 3.2; 3) 1.i ;  4) 0. 

The boundar ies  of the nonidentical inc rease  in the functions e'(w) and tan 5(w) for  l a rge  wavelengths 
a r e  s i tuated approx imate ly  at the point at which we have the t rans i t ion  f rom the monomolecu la r  l aye r  of the 
moi s tu re  of the po lymolecu la r  adsorpt ion.  

The d ie lec t r i c  p r o p e r t i e s  of the mois tened clay were  measu red  in Q - m e t e r s  at mois tu re  contents not 
exceedingtha t  o f t h e b o u n d w a t e r ,  s ince f o r  g r e a t e r  values  of w the conductivity of the sy s t em made up of the 
C h a s o v - Y a r s k  clay and wa te r  i nc reases  marked ly ,  thus leading to a g rea t  inc rease  in the exper imenta l  
e r r o r .  

F igure  lb  shows the exper imenta l  data for  the functions ~'(log29 and tan 5(log X) for  s eve ra l  mo i s tu re  
contents .  For  moi s tu re  contents s m a l l e r  than the quantity of mois tu re  for monomolecu la r  adsorpt ion the 
curve  of the function e T (log X) is in the for m of a s i r  aight line with a sl ight s 1 ope. 

For  g r e a t e r  mois tu re  contents for the region of po lymolecu la r  adsorpt ion,  the permi t t iv i ty  of the 
sy s t em exhibits  d ispers ion .  

The re  is d i spe r s ion  in the tan 5 of the sys t em for the ent i re  region of bound wate r ,  and the g r e a t e r  the 
mois tu re  content,  the s t ronge r  the d ispers ion .  The fact  that long-wave d i spe r s ion  shifts  in the d i rec t ion of 
sho r t e r  wavelengths with an inc rease  in the mois tu re  content of the sys t em is evidently assoc ia ted  with the 
change in the mobili ty of the following adsorbed wate r  molecules .  

The re  is cons iderable  in te res t  in studying the kinet ics  of the p r o c e s s  of convection drying for d i s -  
p e r s e  ma te r i a l  on the bas i s  of the change in the i r  e lee t rophys ica l  p r o p e r t i e s  during the drying p roce s s .  

To invest igate  the kinet ics  of the re la t ionship  between the moi s tu re  content and the capaci tance  of the 
cuvette which contains the spec imen  of C h a s o v - Y a r s k  clay during the p r o c e s s  of convection drying,  we set  
up a device by means  of which we were  able automat ica l ly  to r e c o r d  the change in the capaci tance ,  which is 
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]Tig. 2. Basic  d i ag ram of the unit by means 
of which we r eco rd  the var ia t ions  in the cap-  
aci ty of therneasuring capaci tor  (A), in the 
capaci tance  of the cuvette capaci tor  (]3), and 
in the exper imenta l  data  on the drying of 
C h a s o v - Y a r s k  clay (C); a) t he rmogram;  b) 
curve  for the change in capaci tance;  c) con-  
s tancy of the a i r  t empera tu re ;  d) curve show- 
ing the loss  in weight [d is not indicated in 
the figure].  

p ropor t iona l  to the e '  of the ma te r i a l ,  s imul taneous ly  record ing  the drying t h e r m o g r a m s  and the drying 
curve.  Thus,  the kinet ics  of the change in the capaci tance  of the ma te r i a l  can be d i rec t ly  assoc ia ted  with 
the sequence of r emoving  moi s tu re  found in var ious  fo rms .  

This  instal lat ion provides  the exper imenta l  bas i s  for the the r rnogram method of i so the rmal  drying 
[4, 5] with a cuvette in the fo rm of a measu r ing  capaci tor .  To r e c o r d  the changes in capaci tance,  we set  
up a spec ia l  unit (Fig. 2A). This  unit opera tes  on the pr inciple  of a f requency d i s c r im ina to r  [7], to one of 
whose a r m s  a measur ing  capac i tor  is Connected. The a r m s  of the d i s c r imina to r  a re  tuned to the funda- 
mental  f requency of 776 kHz of a hf gene ra to r .  The selected m e a s u r e m e n t  f requency is de te rmined  f rom 
p r e l i m i n a r y  m e a s u r e m e n t s  of the perrni t t ivi ty  of the t es t  ma te r i a l  on a Q - m e t e r  and is the opt imum f r e -  
quency fo r  this su r face .  

The ze ro  output of the d i s c r i m i n a t o r  to which a measur ing  capaci tor  is connected is set  by means of a 
t r i m m e r  which is connected into the pickup loop. 

To mainta in  a sufficiently high Q fac tor  for the d i s c r imina to r  loop with a measur ing  capac i tor  during 
the drying p r o c e s s ,  the l a t t e r  is provided with an a i r  space  between the ma te r i a l  and the upper  plate.  

The cuvette is a round flat  capac i to r  (Fig. 2]3). To r e m o v e  the mois tu re  being evapora ted  f rom the 
m a t e r i a l ,  the upper  plate of this capac i tor  is made in the fo rm of a thin copper  gr id  1 whose r igidi ty is 
ensured  by at taching t r i ang les  of copper  rods  by means  of soldering.  

The constant separa t ion  of 2.5 mm between the p la tes  is maintained by an ebonite r ing 2 which is 
grooved to leave room for the copper  grid.  The lower plate and the ebonite r ing a re  at tached to an ebonite 
b racke t  3 which is a t tached,  at the top, to a smal l -bu t ton  bantam g lass  tube. In this manner  the cuvet te -  
capac i tor  is connected to the automat ic  ba lance  and the thin copper  conductors  (d = 0.06 ram) do not affect  
the weighing p rocedure .  

The measur ing  capac i tor  is connected by means  of a coaxial  lead to the unit which r e c o r d s  changes 
in capaci tance.  The geome t r i c  capaci tance  of the capac i to r  is 5.5 pF  and that of the coaxial  lead is 12 pF,  
whe rea s  the l imi t  value for  the capaci tance  of the measu r ing  capaci tor  which contains the mois tu re  spec i -  
men being tes ted  is 60 pF.  

The measur ing  capaci tor  is p ro tec ted  in the t he rmos t a t  f rom external  e lec t romagne t ic  f ields by the 
thin copper  gr id  which is r e l i ab ly  grounded. 
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The lower plate  4 of the capac i to r  is made of t inplated p u r e - c o p p e r  foil 0.03 mm in th ickness  and 
44 mm in d iamete r ;  it is a t tached to the ebonite ring. A flat  r e s i s t a n c e  t h e r m o m e t e r  5 (a copper  wi re  
0.06 mm in d i a m e t e r  and a r e s i s t a n c e  of 75 ~ at 20~ is a t tached at the bottom of the p la te ,  and this 
t h e r m o m e t e r  is covered  over  with a mica  plate that is 0.03 m m  thick, and this is then covered  with the 
copper  foil 6. 

It should be noted that the given cuve t t e -capac i to r  p rovides  for  re l iab le  r eco rd ing  of the change 
in the capaci tance  of the ma te r i a l  only when the ma te r i a l  does not shr ink during drying in the spe -  
cif ied mo i s tu r e - con t en t  in terval .  This  method of invest igat ing the re la t ionship  between the pe rmi t iv i t y  
and the mo i s tu re  content during the d ry ing  p r o c e s s  can be for C h a s o v - Y a r s k  clay in the reg ion  of moi s tu re  
contents that  does not exceed the m a x i m u m  hygroscopic  content [8]. 

P r i o r  to the tes t  the clay was put into the cuve t t e -capac i to r  and moist ioned in an exs i cca to r  with d i s -  
t i l led wa te r ,  until the max imum hygroscopic  mois tu re  content was attained. 

An hour before  the s t a r t  of the tes t ,  the measur ing  unit was  switched on to br ing  it into a s t eady-  
s ta te  opera t ional  reg ime.  

The cuve t t e -capac i to r  is a t tached to the unit as quickly as poss ib le  and the ze ro  set t ing of the f r e -  
quency d i s c r i m i n a t o r  is set .  The va r i a t ions  in capaci tance ,  the drying t h e r m o g r a m s ,  the constancy of the 
a i r  t e m p e r a t u r e ,  and the loss  of weight in the drying of the spec imen  a re  r eco rded  on the tape of the auto-  
mat ic  E P P - 0 9 / M 2  e lec t ronic  po ten t iomete r  (Fig. 2C). 

Pro jec t ing  the c r i t i ca l  points of the t h e r m o g r a m  (1, 2), which cor respond  to the var ious  fo rms  in 
which the adsorbed  mois tu re  is bound in the ma te r i a l ,  onto the drying curve ,  we de te rmine  the mois tu re  
content of the ma te r i a l  at these  points.  As we can see f rom Fig. 3C, the c r i t i ca lpo in t s  of the t h e r m o g r a m  
cor respond  to the cr i t ica l  points on the curve  for the change in capaci tance.  This c i r cums tance  conf i rms  
the dependence of the pe rmi t t iv i ty  for the C h a s o v - Y a r s k  clay on the f o r m s  of mo i s tu re  bonding to the m a -  
t e r i a l .  

The capaci tance  v a r i e s  in the following manner  during the drying p r o c e s s .  As the mois tu re  of a 
given bonding fo rm is r emoved ,  the capaci tance  of the sy s t em diminishes  in vi r tual ly  l inear  fashion, and 
this is evidently assoc ia ted  wi th the  p r e s e n c e  in these  moi s tu re -con ten t  regions  of only ce r ta in  types o f p o l a r i z a -  
for  the sys t em.  Ont rans i t ion  a c r o s s  the boundarybe tweenthe  var ious  fo rms  of moi s tu re  bondingwe find a p r o -  
nounced change in capaci tance ,  and this is apparent ly  a r e su l t  of other  types  o fpo la r i za t ion tak ing  effect .  

Thus the invest igat ion of the e lec t rophys ica l  p r o p e r t i e s  of mois t  Chasov -Yar sk  clay shows that they 
a r e  dependent on the f o r m s  in which tile mois tu re  is bound to the mate r ia l .  This exper imenta l  fact  must  
n e c e s s a r i l y  be taken into cons idera t ion  in designing and ca l ibra t ing  e lec t r i ca l  mois tu re  m e t e r s  intended for  
colloidal c ap i l l a ry -po rous  ma te r i a l s .  By studying the kinet ics  of the change in the pe rmi t t iv i ty  of mois t  
colloidal c ap i l l a ry -po rous  m a t e r i a l s  we can der ive  valuable  informat ion on the nature  of the kinet ics  and the 
dynamics  of the p r o c e s s  of convect ion drying. 
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